点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:快盈官网交流群_百度词条
首页>文化频道>要闻>正文

快盈官网交流群_百度词条

来源:快盈官网下载2023-02-17 17:48

  

杭州大运河畔开通一新隧道 系浙江省首条双层隧道******

  中新网杭州1月17日电 (王题题 鲍圣慧)1月17日,位于浙江杭州大运河畔的双层隧道——丽水北路(石祥路-谢村路)正式开通,系浙江省首条双层隧道。

  据悉,丽水北路(石祥路-谢村路)隧道位于杭州拱墅区运河新城单元,南起石祥路,北至谢村路,全长约1085米,双向6车道,为杭州城市次干路。

  其中,隧道一层为双向2车道,主要用来和运河湾区块内的地下空间连通,服务运河湾区域,为机动车的进出提供便利,尽可能实现“人车分流”,最大程度降低对周边地块景观的影响,提升运河湾整体品质;隧道二层则为双向4车道,承担杭州城市隧道功能。

丽水北路(石祥路-谢村路)隧道的地下二层隧道内 杭州市商旅运河集团 供图丽水北路(石祥路-谢村路)隧道的地下二层隧道内 杭州市商旅运河集团 供图

  不同于单层隧道项目的工程建设,丽水北路(石祥路-谢村路)隧道项目的承建方,运河建设管理公司工程二部负责人施军伟告诉记者,该双层隧道在工程建设上存在诸多挑战。比如该隧道工程需下穿京杭大运河管家漾段,因此在施工过程中需对管家漾河道进行临时改迁,保证过往运输船只顺畅。又如该隧道工程需下穿上塘高架桥,因此需对上塘高架桥进行多方面保护措施,保证桥体稳定和桥上行车安全。得益于相关部门的指导支持,顺利完成施工任务。

  记者了解到,虽然丽水北路(石祥路-谢村路)隧道都已建设完成,但鉴于主要用途不同,当天开通的是该隧道的地下二层隧道,限速50公里/小时。

中间两个洞口是地下二层隧道出入口,两侧是地下一层隧道出入口 杭州市商旅运河集团 供图中间两个洞口是地下二层隧道出入口,两侧是地下一层隧道出入口 杭州市商旅运河集团 供图

  至于该隧道的地下一层隧道何时启用?施军伟表示,目前,该隧道两侧很多地块都还在开发建设中。而地下一层隧道主要服务于规划中的运河湾综合体,将用来连通周边地块的地下空间,计划在运河湾综合体建成后作为配套工程同步启用。

  “今后随着居民、商业入驻运河湾综合体,该双层隧道的利用率也会进一步提高。以后大家开车过来,可以通过地下一层隧道直达运河湾综合体。”施军伟兴奋地说。

  同时,他也相信,丽水北路双层隧道全部开通后,将成为运河新城区块内贯通南北的核心道路,将打通管家漾南北两侧的道路,将为南北向车辆通行增加新路线,也将为大运河滨水空间项目的开发建设提供交通方面的更好支持。(完)

                                                • 快盈官网交流群

                                                  诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

                                                    相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

                                                    你或身边人正在用的某些药物,很有可能就来自他们的贡献。

                                                  诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                    2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

                                                    一、夏普莱斯:两次获得诺贝尔化学奖

                                                    2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

                                                    今年,他第二次获奖的「点击化学」,同样与药物合成有关。

                                                    1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

                                                  诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                    过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

                                                    虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

                                                    虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

                                                    有机催化是一个复杂的过程,涉及到诸多的步骤。

                                                    任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

                                                    不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

                                                    为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

                                                    点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

                                                    点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

                                                    夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

                                                    大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

                                                    大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

                                                    大自然的一些催化过程,人类几乎是不可能完成的。

                                                    一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

                                                     夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

                                                    大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

                                                    在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

                                                    其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

                                                    诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

                                                  诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                    夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

                                                    他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

                                                    「点击化学」的工作,建立在严格的实验标准上:

                                                    反应必须是模块化,应用范围广泛

                                                    具有非常高的产量

                                                    仅生成无害的副产品

                                                    反应有很强的立体选择性

                                                    反应条件简单(理想情况下,应该对氧气和水不敏感)

                                                    原料和试剂易于获得

                                                    不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

                                                    可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

                                                    反应需高热力学驱动力(>84kJ/mol)

                                                    符合原子经济

                                                    夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

                                                    他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

                                                    二、梅尔达尔:筛选可用药物

                                                    夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

                                                    他就是莫滕·梅尔达尔。

                                                  诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                    梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

                                                    为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

                                                    他日积月累地不断筛选,意图筛选出可用的药物。

                                                    在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

                                                    三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

                                                    2002年,梅尔达尔发表了相关论文。

                                                    夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

                                                  诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                    三、贝尔托齐西:把点击化学运用在人体内

                                                    不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

                                                  诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                    虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

                                                    诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

                                                    她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

                                                    这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

                                                    卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

                                                    20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

                                                    然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

                                                    当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

                                                    后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

                                                    由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

                                                    经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

                                                    巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

                                                    虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

                                                    就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

                                                    她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

                                                    大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

                                                  诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                    2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

                                                  诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                    贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

                                                    在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

                                                    目前该药物正在晚期癌症病人身上进行临床试验。

                                                    不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

                                                  「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

                                                    参考

                                                    https://www.nobelprize.org/prizes/chemistry/2001/press-release/

                                                    Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

                                                    Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

                                                    Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

                                                    https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

                                                    https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

                                                    Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

                                                    (文图:赵筱尘 巫邓炎)

                                                  [责编:天天中]
                                                  阅读剩余全文(

                                                  相关阅读

                                                  推荐阅读
                                                  快盈官网手机版CBA下季新赛制:常规赛4组循环 增至46轮
                                                  2024-06-26
                                                  快盈官网网址梁山最不合群的好汉:没有一个朋友,无人问津最终孤独病死
                                                  2024-04-14
                                                  快盈官网骗局美两艘军舰擅闯台湾海峡 美太平洋舰队发表嚣张声明
                                                  2024-09-09
                                                  快盈官网网址高考家长:你的酸甜苦辣我都懂
                                                  2024-05-13
                                                  快盈官网开户彭丽媛邀请外方领导人配偶欣赏中国戏曲
                                                  2024-10-13
                                                  快盈官网官方第七届“炫彩世界”——“一带一路”沿线国家特色文化展示活动
                                                  2024-07-12
                                                  快盈官网app一对“毒鸳鸯”被查秒变戏精 称“吸毒为了国家”
                                                  2024-05-24
                                                  快盈官网投注 看到嫩版吴彦祖,和萌版范丞丞不心动算我输!这些校草我锁了
                                                  2024-01-22
                                                  快盈官网攻略怕衰老?这个“年轻因子”了解一下
                                                  2024-04-04
                                                  快盈官网APP美国又一盟友力挺华为:不会威胁国家安全
                                                  2024-03-26
                                                  快盈官网玩法广州再次加大抢人力度 本科在职社保连缴半年可落户
                                                  2024-08-05
                                                  快盈官网官方网站节前盘整节后企稳反弹
                                                  2024-08-23
                                                  快盈官网代理曾经两胜梅西的MVP 如今曼联高薪的罪魁祸首
                                                  2024-09-18
                                                  快盈官网计划群广州再次加大抢人力度
                                                  2024-04-06
                                                  快盈官网邀请码世锦赛丁俊晖次阶段反击赢六局 9-7反超特鲁姆普
                                                  2024-07-04
                                                  快盈官网登录运营高手都会的3大技能
                                                  2024-07-13
                                                  快盈官网手机版APP雍和宫门口千年龟骗局:70元鳄龟卖1600元
                                                  2024-06-04
                                                  快盈官网软件 5天狂揽12亿美元 《复联4》创全球票房记录
                                                  2024-01-11
                                                  快盈官网客户端下载菲总统:不运走垃圾,就丢到加拿大海滩和使馆
                                                  2024-11-01
                                                  快盈官网登录第5期|马振山:不进则退 一汽-大众“两把火”暖寒冬
                                                  2024-08-31
                                                  快盈官网漏洞 慈禧五代外孙女曝光,百年之后又见“慈禧”,网友:太像了
                                                  2024-01-09
                                                  快盈官网下载app近亲结婚为何能传承几千年
                                                  2024-08-14
                                                  快盈官网平台长沙楼市春季冰火两重天
                                                  2024-08-02
                                                  快盈官网必赚方案 真人"黑寡妇"?俄罗斯"最美女兵"出炉:金发及腰 枪法精准
                                                  2024-09-16
                                                  加载更多
                                                  快盈官网地图